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Thermal Diffusivity and Thermal Expansion: 
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Thermal diffusivity and thermal expansion in high-conducting solids can be 
measured by means of a capacitance method, which turns out to be simple, 
reliable, and accurate and yields the first property with an accuracy of ~ 1% 
and the second one with an accuracy of ~2 %. Preliminary results, which are 
consistent with the literature, have been obtained on pure aluminum (99.999 %) 
and on commercial copper, both at near room temperature. 
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1. I N T R O D U C T I O N  

The knowledge  of the rmal  diffusivity (e) and  of  the rmal  expans ion  
coefficient (/?) is fundamen ta l  for charac ter iz ing  the behav io r  of mater ia l s  
subjected to the rmal  stress. Consequen t ly  it is requi red  in basic  and  in 
advanced  technology,  and  pa r t i cu la r ly  in aeronaut ics ,  where the design of 
mechanica l  componen t s  work ing  under  severe stress condi t ions  and high 
thermal  gradients  requires  an accura te  de te rmina t ion  of the above  
parameters .  

In  a recent  pub l i ca t ion  [1 ] we presented  briefly a new exper imenta l  
m e t h o d  which al lows the s imul taneous  measuremen t  of e and  /3 in 
h igh-conduc t ing  mater ia ls :  we note  tha t  the high accuracy  ( ~ 1 % )  by 
which ~ can be ob t a ined  is i m p o r t a n t  by  itself, as a new con t r ibu t ion  to the 
field of  the rmal  diffusivity measurements .  
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In the present paper we discuss in detail the features of the method 
and apply it to measurements of c~ and /~ for both pure aluminum and 
commercial copper, obtaining values consistent with the literature. 

Let us first recall that measurements of thermal diffusivity in solids 
[2] are generally affected by errors due to uncontrolled heat losses 
connected with: (1) radiation effects through the surface, (2) thermocouple 
leads inserted into the specimen, (3)mechanical support of the specimen, 
and (4)lack of correspondence between the actual heat source Q(t) 
employed to heat the specimen and the theoretical source introduced into 
the diffusion equation [3 15]. 

Finally, in measurements employing the flash method [ 16-18] one has 
to consider two other sources of error: (5)the inadequacy of Fick's law to 
treat the high-temperature gradients near the irradiated area and (6)the 
nonuniform intensity distribution of the heat source (that is, of the beam 
irradiating the specimen) [5-12, 16-18]. 

While the errors due to point 1 are negligible for metals in vacuum 
below room temperature, those due to point 2 are always present and 
become especially important at low temperatures, because in this case heat 
is conveyed to the specimen from the exterior of the vacuum box where the 
specimen is contained. These errors could be partially avoided by employ- 
ing radiometric techniques [19, 20] to measure the temperature at some 
point on the surface, However, such techniques [19] are fully satisfactory 
only at high temperatures; they have a poor sensitivity at room tem- 
perature and become completely inadequate near absolute zero. The four 
remaining sources of are never eliminated in standard methods and their 
magnitude cannot be easily estimated. In particular, we stress the fact that 
the only way to eliminate the problems caused by point 4 would involve 
measuring the time behavior of the heat source, as proposed in this paper. 

2. PRINCIPLES OF THE E X P E R I M E N T A L  M E T H O D  

We present a method for high-conducting materials where the heat 
source is provided by two parallel rings (D 1 and D2 in Fig. 1), made of 
Chromel and Alumel, respectively, and tightened around the middle section 
of a cylindrical specimen; the two rings are separated by a gap of 0.01 mm. 
Each ring is pressed against tbe specimen by the elastic stresses due to its 
inner diameter, which is slightly smaller than the diameter of the specimen 
(2R). A thin radial cut allows the ring to deform following the change of 
R due to thermal expansion, without producing excessive constraint on the 
specimen itself. The cross section of each ring presents, at the contact with 
the specimen, an edge-shaped profile, the width a of each edge being 
0.25 mm. The Joule heat generated by a resistive wire (J) surrounding the 
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rings is transferred by conduction to the specimen and therefore the system 
of the two rings acts like a heat source. But at the same time, it is a 
thermocouple by which the temperature of the specimen area in contact 
with the rings can be easily recorded as a function of time. This represents 
information from which the heat source Q(t) can be derived, and conse- 
quently measured, by numerical solution of an integral equation [see 
Eq. (8)].  In this way, we eliminate the errors involved in point 4. The small 
value of a ensures that the temperature of the specimen surface is really 
uniform in the entire area where it provides contact between the two 
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Fig. 1. Schematic diagram of the apparatus. Note that the shields A l and 
A z are made of thermal insulating material (plexiglass). 
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elements of the thermocouple. Consequently, the error introduced by the 
thermoelectric power of the specimen at the hot junction is absolutely 
negligible. 

Errors due to point 2 are eliminated through the use of a capacitive 
system where one plate of the capacitor consists of a 10-cm-diameter disk 
of fused silica (P1) lying on the upper end of the specimen (see Fig. 1); the 
second plate is an annular fused silica disk (P2) surrounding the specimen 
and placed by three leveling screws (S) on a fused silica support. 

By suitable adjustment of the screws one obtains a system of two 
parallel plates with a gap of the order of 0.05 mm. If the two adjacent 
surfaces of the disks are coated by a conductive film, this becomes a 
high-sensitivity detector of any change in length of the specimen. In 
particular, the temperature field produced by the heat source Q(t) gives rise 
to dilation effects which can be accurately measured. In this way, the 
capacitance change as a function of time represents additional information 
from which the thermal diffusivity can be derived. 

It should be pointed out that the two ends of the specimen are 
separated from the upper plate of the capacitor and from the fused silica 
base of the apparatus, respectively, by three fused silica pins at 120 ~ at a 
distance rE from the axis. Owing to the small contact area between the 
specimen and each pin (which is essentially a point) and to the low thermal 
conductivity of fused silica, the uncontrolled heat losses through the ends 
become completely negligible. In this way, the errors due to point 2 are 
eliminated because in this method no lead is directly attached to the 
specimen, and no appreciable heat transfer is introduced by the capacitive 
system. This feature also obviates the need to consider point 3 since the 
mechanical support is provided by the fused silica pins. At the same time, 
one eliminates the errors due to point 5 (because heat is slowly conveyed 
by conduction through the rings, giving rise to small gradients) and to 
point 6 (because the width of the annular area is so small that the heat 
source can be assumed to be uniform in this area). 

A few words are now necessary on the technical problems we had to 
solve in setting up the measuring apparatus. 

The connection between each ring of the central thermocouple and the 
corresponding electric lead is conveniently obtained by a screw inserted 
into the ring and made of the same material. The electrical connection 
between the rings must be achieved through the specimen, and not through 
spurious contacts between the two adjacent surfaces of the rings. Such 
contacts can be easily prevented if these surfaces are coated by an 
electrically insulating film. 

The capacitive signal is first brought from the capacitor plates to a 
connector inserted into the wall of the vacuum box. Two shielded cables 
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outside the box lead from the connector to the electric measuring system, 
which in our apparatus consisted of a GenRad capacitance bridge, and an 
ITHACO lock-in amplifier. The amplified signal was finally sent to a Y(t) 
recorder (see Fig. 2). 

The sensitivity of the capacitive system was so high that a change in 
the specimen length of the order of 0.1 nm was easily detected. However, in 
our measurements at room temperature, such a high sensitivity was never 
used; it should be invoked only for low-temperature measurements. 

Care must be taken to avoid spurious torque applied to the upper disk 
of the capacitor by the electric lead. This torque can be generally avoided 
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Fig. 2. Block diagram of the instrumentation for high-sensitivity 
capacitance measurements. 
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by fixing the lead to the center of the disk on its upper face, just over the 
contact area between the fused silica pins and the sample. Of course, the 
conductive coating must be distributed over the whole disk, in order to 
ensure electrical continuity between its two faces. Alternatively two rigid 
pieces of a nickel wire, each having the form of an inverted right angle, and 
about 2 cm long, can be fixed to the lateral border of the disk, in symmetri- 
cal positions with respect to its center; the free end of one piece is immersed 
in a small vessel containing mercury, from which the signal can be brought 
to the measuring apparatus without any mechanical perturbation to the 
disk. This method was followed in our measurements at room temperature. 

Summarizing, we present a method which is valid at any temperature 
but is of special interest in the low-temperature range. It is true that as the 
temperature approaches absolute zero, the expansion coefficient/~ goes to 
zero and consequently the capacitive signal is correspondingly reduced. 
However, the sensitivity of a capacitance system is so high that we estimate 
the method could be used even for values of/3 of the order of l0  -7  K 1 
(which, for typical metals, corresponds to temperatures of a few kelvins). In 
this case, for a specimen 15 cm long, a temperature change of 1 K would 
give rise to a change in length of 15 rim, about two orders of magnitude 
higher than the minimum displacement detectable by our instrument 
[21, 22]. 

3. MATHEMATICAL FRAMEWORK AND EXPERIMENT 

For a cylindrical specimen of height 21 and radius R, where we 
introduce cylindrical coordinates (r, z, ~p) with the z axis along the axis of 
the specimen and the origin at the center of its middle section, we obtain 
the temperature field O(r, z, t) by solving the heat diffusion equation 

V20_~ 1 ~O/Ot= - k - l q ( r ,  z, t) (1) 

where c~ is the diffusivity, k the thermal conductivity, and q(r, z, t )=  
Q(t) 6 ( r -  R) the heat source, localized in the region - a  ~< z ~< a. For a we 
choose the width of the edge of each ring forming the central thermocouple 
(a=0.25mm).  At t - -0  the specimen is assumed at the uniform tem- 
perature 0 = 0 (in thermodynamical equilibrium with the environment). 

Equation (1) can be easily solved under general boundary conditions 
of the form - k  ~OLOn = hO, where O/On means the normal derivative at the 
surface of the specimen, and coefficient h accounts for radiative effects. The 
solution may be written as 

f2 O(r, z, t) = O(r, z, t -  t') S(t') dt' (2) 
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where 

S( t ) = 47cac~Q( t )/klR (3) 

Denoting by {xs } and { yp } the infinite sets of roots of the trascenden- 
tal equations 

yJ~(y) + Rh/kJo(y ) = 0 (4) 

x sin x -- hl/k cos x = 0 (5) 

and putting 2 s = x j l  and 33p = yp/R, one has 

O(r, z, t )=~,  {fsp(r, z ) e x p [ - 7 ( 2 2  + ~p2)/] } (6) 
s p  

where 

fsp(r, z) = [sin(2,a)/2sa] cos(2sZ) Jo(~Opr) Jo(Yp) 

x [ ( l  +sin(2x,)/2xs) f] ~Jg(yp~)d~] 1 (7) 

The source function S(t) can be obtained by a numerical solution of the 
integral equation 

01(t) = O(R, O, t -  t') S(t') dt' (8) 

where O~(t)=O(R,O, t) is the temperature recorded by the two-disk 
thermocouplc. The solution of Eq. (8) is obtained for a given arbitrary 
choice of e and therefore is denoted S~(t). To see how this function can be 
used to obtain the true value of e it is necessary to discuss the change of 
length of the specimen corresponding to the temperature distribution 
described by 0(r, z, t). This is given by 

o l 

A(r, t) = fl J O(r, z, t) dz (9) 
- - l  

where O(r, z, t) is taken from Eq. (2) and fl is the linear thermal expansion 
coefficient. 

A numerical study of the solutions of the thermoelastic equations 
1-23, 24] shows that these are in full agreement with the simple expression 
in Eq. (9) for any temperature distribution depending on z, but not on the 
radial coordinate (see the Appendix). This assumption is widely verified in 
metallic specimens, where the high value of the diffusivity ensures, for a 
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given z, a uniform temperature profile within one part in 10 4. Under these 
conditions, the dilation given by Eq. (9) is independent of r and for this 
reason we simply write A(t). 

On the other hand, we also assume a nonlinear relation of the form 

A = p V + 6 V  2 (10) 

between A and the measured signal V due to the capacitance change. 
In principle, for a given initial value of the capacitance, Co, the 

parameters p and a can be determined through an independent experiment 
by measuring the capacitive signals corresponding to two different values of 
A, imposed by turning the leveling screws. In practice, we found a more 
convenient procedure, allowing the simultaneous determination of p and a 
through the analysis of the curves A(t) and V(t) corresponding to the 
heating of the specimen. This procedure will be discussed later. 

From Eqs. (2) and (9) we have the theoretical change of length 

/~th(1) = /~ ~(t-t')S~(t')dt' (11) 

where 

q~(t) =~ {g~p(r) exp[-m(2~ + ~2)t] } (12) 
sp 

and 

g~(r) = 2(sin(2sa)/2~a)[sin(2 fl)/2,] Jo(f~pr) Jo(Yp) 

x I(l +sin(2x~)/2xs) f] ~JZ(yp~)d~] -1 (13) 

Our procedure now is to introduce into Eq. (11) the function S~(t) deduced 
from Eq. (8). The theoretical change of length Ath(t) must be fitted to the 
experimental function given by Eq. (10), where V(t) is now the signal 
recorded during the heating of the specimen. 

The true value of c~ can be therefore obtained through a least-squares 
analysis, by minimizing the function 

6(c~) = ~ [pV(ti) + a v Z ( t i ) -  Ath(ti)]2 (14) 
i 

where the sum is extended to the N times ti taken (at regular intervals) 
through the total time interval of the measurement. 

The present paper is essentially concerned with a preliminary set of 
measurements, performed in vacuum on metallic specimens at room 
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temperature to check the reliability of the method. At this temperature, 
when the specimen is made of a high-conducting material, we can neglect 
any heat exchange due to radiation effects even during a considerable time 
interval, and correspondingly put h = 0 in Eqs. (2)-(5). Although in this 
case, once p and a are known, the initial slope of the curves O~(t) and V(t) 
is sufficient to determine, in a very short time of measurement, the 
diffusivity e of the specimen, we decided to analyze the whole behavior of 
the curves corresponding to a total interval of about 500 s, in which the 
heat source was arbitrarily varied in time. In fact the amount of informa- 
tion we can deduce in this case from experiment is so great that not only 
c~, but also p and a can be obtained from the same pair of curves. In these 
circumstances the system does not require any previous calibration and 
provides a powerful and precise method to determine thermal diffusivity. In 
mdre precise terms, putting p/fl = 2, a/fl = #, we can minimize, instead of 
Eq. (14), the expression 

(15) 

to be considered as a function of the three variables ~, 2, and #. The 
minimization with respect to 2 and # can be performed analytically and 
gives 

(16) 

(17) 

where 

and L stands for the integral appearing in Eq. (15). These expressions, 
depending on e, must be substituted into Eq. (15) in order to perform 
the required numerical minimization with respect to this parameter. We 
applied the above procedure to a specimen of pure aluminum, with 
2 l=  15 cm, R = 0 . 5  cm; the curves 01(t) and V(t)obtained for an initial 
capacitance of 385 pF are reproduced in Fig. 3. Table I gives the values 
obtained for 6-from Eq. (15) as a function of e. As may be seen, the mini- 
mum is well defined and corresponds to c~=0.87 x 1 0 -4 m 2 . s  -1, which is 
nearly coincident with the value of 0.86 x 10 4 mZ.s 1 given in Ref. 25. 

840/11/6-9 
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Fig. 3. Heating curves for a specimen of pure aluminum: 0~ represents 
the temperature recorded by the two-disk source thermocouple, V(t) the 
capacitive signal, and S(t) the heat source function as obtained by 
solving Eq. (8). The y-axis scale is arbitrary. 

This result proves the reliability of the method for measurements of 
thermal diffusivity. The source function as deduced from Eq. (8) and 
corresponding to the extremal value of e is reproduced in Fig. 3. The 
usefulness of the method, however, is not confined to a determination of c~. 
By substituting the extremal value of e into Eqs. (16) and (17) one also 
obtains the relative thermal expansion coefficient of the material under 
study with respect to a reference material to which the method has been 
previously applied. In more precise terms, if )~1 and 22 are the resulting 
values'of )o for specimens 1 and 2, respectively, one simply has 

~1/~2 =/~2/~1 (18) 

Table I. Values of the Square Sum 6 (in Arbitrary Units) as a Function of c~ 
(in 10 4m2 .s -1) for Aluminum; The Minimum is Well Defined at ~=0.87 • 10-4m 2 .s -1 

0.84 0.85 0.86 0.87 0.88 0.89 0.90 
3.19 2.78 2.52 2.38 2.52 2.77 3.14 
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provided the geometrical configuration of the plates is the same in the two 
corresponding measurements. In fact, only in this case can one assess 
the invariance of p and a and, hence, the validity of Eq. (18). The 
reproducibility of a given configuration of the plates is dependent on their 
parallelism and on the resulting value of capacitance, C o . If parallelism is 
ensured, two experiments with different specimens for which the initial 
value of Co is the same obviously refer to the same pair of values for p and 
a. The analysis of several heating curves referring to the same specimen and 
to  the same value of initial capacitance Co, but corresponding to different 
mountings of the capacitor plates, showed that the value of 2, and conse- 
quently of p, is reproducible to within ~ 2 % if the following procedure to 
obtain a good parallelism is adopted: once the upper plate of the capacitor 
has been put on the tripod mounted on the upper end of the specimen, the 
leveling screws are adjusted in such a way that, starting from the configura- 
tion under study, an equal number of turns imposed independently to each 
screw produces the same capacitive signal within an uncertainty of ~ 10 %. 
Using a specimen of pure aluminum, we investigated the consistency of the 
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Fig. 4. Values of the parameter 2, as obtained for a sample of A1 in 
different experiments at different initial capacitances Co. The y-axis scale is 
arbitrary. Note the quasilinearity of 2 with respect to the reference 
capacitance Co. 
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Fig. 5. Heating curves for a specimen of copper: 01 represents the 
temperature recorded by the two-disk source thermocouple, V(t) the 
capacitive signal, and S(t) the heat source function as obtained by 
solving Eq. (8). The y-axis scale is arbitrary. 

above mounting procedure. For  each configuration obtained in this way, 
we measured the initial capacitance Co and heated the specimen. The 
analysis of the heating curves yielded values of 2 which are plotted as a 
function of the measured value of Co in Fig. 4; we deduced a linear correla- 
tion between these two parameters, accurate to within ~ 2 %. It was more 
difficult to establish a correlation between # and Co. We could say only 
that in the interval between 380 and 390 pF,/~ was approximately constant, 
within an uncertainty of about ~,-20%. Such a rough estimate was, 
however, sufficient for our purposes, owing to the small magnitude of the 
nonlinear term, 

Table II. Values of the Square Sum 5 (in Arbitrary Units) as a Function of 
(in 10-4 m 2 "s- 1) for Copper; The Minimum is Well Defined at e = 0.93 x 10-4 m 2 "s 1 

0.90 0.91 0.92 0.93 0.94 0.95 0.96 
3.29 2.88 2.62 2.52 2.58 2.72 3.02 
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Table !II. Values of the Three Parameters c~ 
(in 10-4m2-s- l ) ,  .~, and g (in Arbitrary Units) 

Obtained by Minimizing Eq. (15) for Aluminum and Copper; 
The Measurements Have Been Performed at the Same 

Capacitance Co (385 pF) 

A1 Cu 

c~ 0.87 0.93 
2 0.71 0.98 

(10 4) 5 6 

In a second experiment, where we used a cylindrical specimen of 
commercial copper (UNI-5649), we adopted the same mounting procedure 
as before and measured the capacitance of the resulting configuration. 
Heating the specimen, we obtained the pair of curves presented in Fig. 5, 
from which we deduced the well-defined minimum displayed in Table II and 
the extremal values of c~, 2, and # given in the third column in Table III (the 
second column provides the corresponding values obtained for aluminum 
at the same capacitance). 

The value of ~ obtained for our specimen of commercial copper was 
checked by an independent experiment in which the upper plate of the 
capacitor was taken out and the temperature 02(t) of the upper face of the 
specimen was recorded by means of a small thermocouple attached to the 
center of the end face [26]. By introducing the source function deduced 
from the two-disk thermocouple into Eq. (2) calculated for r = 0, z = l, and 
imposing t h e  best fit to the experimental function 02(t), we deduced 
~=0.93 x 10 .4  m2-s -1, in full agreement with the value in Table III. 
Moreover, from Table III we obtained 2Al/2Cu=0.727, again in full 
agreement with the ratio of the expansion coefficients ficu/fiAI = 0.724, as 
deduced from the data of Wallace [27]. 

To test the significance of these results, we repeated our measurements 
with different initial values of the capacitance Co. We found values of 2 and 
# slightly dependent on Co, but the resulting value of ~ was invariably 
reproduced within ~ 1%. 

4. C ONC LUS I ON 

Although more extensive measurements on many specimens should be 
made, from the few data presented in this paper it is already possible to 
assess the advantages of an experimental method which, in principle, is not 
restricted to any specific temperature range but becomes of special impor- 
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tance at low temperatures, where it eliminates the problem of heat 
exchange through the thermocouple leads or of the poor sensitivity of 
radiometric detectors to measure the surface temperature of the specimen. 
Finally, we emphasize the practical use of a method which allows, in the 
frame of a single measurement, the simultaneous determination of two 
independent parameters such as the thermal diffusivity and the thermal 
expansion coefficient. This aspect should be carefully, considered by 
industrial laboratories where systematic characterizations of materials are 
made, with consequent problems of minimizing the measurement times. 

A P P E N D I X  

To discuss the approximation inherent in the integral of Eq. (9) one 
has, in principle, to solve the equation of thermoelasticity: 

V2u+ l / ( 1 - 2 v ) g r a d d i v u - 2 / ( 1 - 2 v ) f i g r a d O = O  (A1) 

where u is the displacement field, f l  the thermal expansion coefficient, 0 the 
temperature field, and v Poisson's ratio. 

We solved this equation for a cylindrical specimen with length 2l, 
diameter 2R, subject to a uniform heat source in the region - a ~< z ~< a and 
r = R. Note that such a configuration is the actual one used during our 
experiment. The source was assumed to be 

S(t) oct  exp( -T t )  (A2) 

with ~ =0.015; this function simulates the real behavior of a typical heat 
source used in our experiments. First, we solved the Fourier equation to 
obtain the temperature field O(r, z, t) in a specimen of aluminum with 

Table AI. Comparison Between d(R, t) as Given by Eq. (9) and the True Displacement 
Field at r = R, z = l for a Cylindrical Specimen with a Temperature Distribution 

Depending on r, z, and t (High Diffusivity: c~ = 0.9 x 10 -4 m 2. s -1) 

t(s) 10 40 80 120 160 200 

A(R, t) 0,00320 0.03802 0.10468 0.16578 0.21215 0.24403 
uz(R, l, t) 0.00319 0.03797 0.10463 0.16573 0.21211 0.24401 
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Table All. Comparison Between A(R, t) as Given by Eq. (9) and the True Displacement 
Field at r = R, z = l, for a Cylindrical Specimen with a Temperature Distribution 

Depending on r, z, and t (Low Diffusivity: c~-1.0x 10-Vm2-s -l) 

t(s) 10 40 80 120 160 200 

A(R, t) 0 .03156  0 .20008  0 .40758  0 .55499  0 .65259  0.71515 
uz(R, l, t) 0.00831 0 .09940  0 .27510  0 .43802  0 .56392  0.65305 

2 / =  15 cm, 2 R =  1 cm, a =  1 mm, and ~ =  1 0 - 4 m  2 .S -1, neglecting heat 

losses th rough  the surface. Second, employing a procedure similar to that  
given by Kova lenko  [-24], we solved Eq . (A1)  for / ~ = 2 4 x 1 0 - 6 K  - I ,  
v=0 .33 ,  and obtained the displacement field u(r ,z ,  t). In Table AI, 
uz(R, l, t) is compared  to the dilation A(R,  t) as given by Eq. (9). As may 
be seen, the discrepancy is always contained within a few parts in 103 for 
any time dura t ion longer than ~RZ/Tz2o~, which for an a luminum specimen 
with R = 0.5 cm amounts  to only 25 ms. However,  the discrepancy between 
A(R,  l, t) and u=(R, l, t) turns out to be impor tan t  for low-conduct ing 
materials (see Table AII).  We may  compare  such results with those 
obtained by assuming the source uniformly distributed over 0 ~< r ~< R in 
the same axial region -a<<,z <<,a (see Table AIII) .  With the same source 
function given by Eq. (A2), we found that for low-conduct ing materials the 
discrepancy between A(R,  l, t) and uz(R, l, t) is again neglible within a few 
parts in 103. This result is a consequence of the fact that, for our  source, 
the temperature field is independent  of r (that is, we are dealing with a 
one-dimensional  Fourier  equation).  

Hence the dilatometric method can be in principle applied also to 
low-conduct ing materials E28], provided the heat source is radically 
changed, so as to render the temperature field independent of the radial 
coordinate.  

Table AIII. Comparison Between A(t) as Given by Eq. (9) and the True Displacement 
Field at the Upper Face of a Cylindrical Specimen, for a Temperature Distribution 

Depending Only on z and t (c~= 1.0 • 10 -v m 2 .s 1) 

t(s) 10 40 80 120 160 200 

3(0 0.00415 0 .04970  0 .13756  0 .21902  0 .28197  0.32653 
u~(R, l, t) 0.00414 0 .04965  0 .13750  0 .21897  0 .28193 0.32650 
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